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Abstract

SoDa is a software defined radio system using the Ettus Radio USRP
and its WBX VHF/UHF daughtercard. SoDa implements an all-mode
(CW, USB, LSB, AM, NBFM, WBFM) radio suitable for use as an
exciter/IF-strip for microwave transverters and in the VHF and UHF
ham bands.1

1 Introduction

In 2012 I began work on an IF radio to drive a 10GHz transverter system. The
previous radio – an FT817 – had worked well, but it was time for a change. This
provided an excuse to try out the USRP/N200 software defined radio system
manufactured by Ettus Research. It was also the impetus to develop SoDa, the
software defined radio application for the N200.

The goals of the SoDa project were modest:

• Function as a “learning lab” to explore software defined radio and digital
signal processing concepts.

• Provide a practical platform for interfacing to a microwave transverter.

• Create a versatile all-mode exciter for the VHF and UHF amateur bands.

• Improve on the performance of my earlier microwave systems that used
an “analog” IF radio.

Of the four goals, the first was the actual motivation. As a result, all com-
ponents in the signal processing chain for the SoDa radio are developed “from
scratch” though there are numerous toolkits and signal processing libraries that

1This article was first published in the proceedings of “The 40th Eastern VHF/UHF Con-
ference” on April 11-13, 2014.
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might have served the other goals. For instance, GNU Radio[1] offers many
useful building blocks for construction of a transceiver, but I really wanted the
experience of developing all the components – filters, mixers, oscillators, and
the rest.

1.1 The USRP Hardware

The USRP (Universal Software Defined Radio) is primarily marketed to re-
searchers and educators exploring cognitive radio and other emerging technolo-
gies. There are several models in the product line, including completely self-
contained digital transceivers, Ethernet-connected, and USB peripheral radios.
The N200 shown in Figure 1 connects to a host computer via a 1 Gbit/s Ether-
net link. The N200 converts RF to and from a digital stream, while the attached
computer performs most of the necessary signal processing.

Figure 1: The Ettus Research USRP N200 Software Defined Radio

The N200 is modular. The main system module contains two 100 MS/sec2

analog to digital converters, two 400 MS/sec digital to analog converters, a field
programmable gate array, and an Ethernet interface. A daughter card module
implements the RF front-end. SoDa is built to use the WBX module that offers
full receive and transmit operation from 50 MHz to 2.2 GHz. A simplified system
diagram of the N200+WBX configuration is shown in Figure 2. Performance
specifications in Table 1 are more than adequate for an IF radio.

1.2 The Software

The USRP/N200 platform is controlled by software running on an attached host
computer. An application controls the USRP via calls to an open-source library
(libuhd) developed and provided by Ettus Research. The library provides func-
tions to set oscillator frequencies on the WBX module and in the FPGA, set
sample rates in the FPGA, control data transfers to and from the USRP, and

2MS/sec: Mega samples per second, kS/sec: kilo samples per second
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Figure 2: The USRP N200 and WBX Daughter Card

manipulate control and status registers within the USRP. Figure 3 shows the
major software and hardware components that make up a SoDa radio. The
SoDaServer program handles the modulator and demodulator functions for
each communication mode, software control of the USRP, and all the functions
behind the knobs and buttons presented by the entirely separate SoDaRadio
GUI program.

The SoDaServer program must handle a number of event streams, each
with real-time constraints. The simplest programming scheme to deal with
these independent tasks employs multiple threads, each tasked with a single set
of related operations. Figure 4 shows the connections between the eight threads
that make up SoDaServer.

USRPCtrl handles all control functions between the host and the USRP.
Commands that change TX or RX frequency, front end gains, amplifier
settings, and transmit/receive switches all pass through the USRPCtrl
thread.

USRPRX receives sample streams from the USRP, and downconverts the
stream to the final tuned frequency. The baseband stream is passed to
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Frequency Range 50MHz to 2.1GHz
1st IF Tuning Range (TX/RX) +/- 20MHz

RF Sample Rate (RX) 100 MS/sec
ADC Resolution 14 bits
Noise Figure 5 dB

RF Sample Rate (TX) 400 MS/sec
DAC Resolution 16 bits
Power Out 100 mW

Table 1: System Specifications for USRP/N200 + WBX Module
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Linux
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Figure 3: The SoDa Radio System

the AudioRX unit.

AudioRX resamples the baseband stream from USRPRX and demodulates
it. The resulting audio stream is passed to the host system’s audio device.

AudioTX receives audio (microphone) inputs from the host system’s audio
device, and creates an in-phase (I) and quadrature (Q) version of the
signal that can be passed through the USRPTX and on to the USRP
transmit path.

CWTX receives text strings from the UI thread for encoding into morse code.
The resulting symbol stream is impressed onto a CW envelope and passed
to the USRPTX.

USRPTX in audio modes, passes the I/Q audio stream to the USRP. In CW
mode, the envelope from CWTX is impressed onto an I/Q low frequency
carrier and passed onto the USRP transmit path.

UI receives requests from the graphical user interface and passes them onto the
command bus or to the CWTX converter. The UI also passes spectrum
information from USRPRX to the GUI.
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GPS TSIPmon manages a serial connection to a Trimble Thunderbolt GPS
receiver. Collected position and time information is passed through the
UI thread to the GUI.
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Figure 4: The SoDa Server

The SoDaServer threads communicate among themselves via a set of com-
munication buses. Each bus carries messages from one source to all “listeners”
on the bus. A listener subscribes to a bus, polls the bus for messages, and dis-
poses of each message when its contents are no longer needed. Communication
buses are implemented in shared memory between the threads. The communi-
cation functions are designed to limit the amount of buffer copying and other
data movement. All interactions with the bus are thread-safe and protected by
software locks where necessary.

1.3 Useful Background: In-phase and Quadrature Signals

Before describing the implementation of the SoDa radio, it is important to
understand a fundamental concept in software defined radio design: the in-
phase/quadrature representation of a signal stream.

SoDa and the USRP operate on the input signal stream as a pair of signals,
called “I” and “Q”. This notion of processing a signal as an I/Q pair is central
to how an SDR works – almost all of the really useful DSP tricks depend on it.
The I (in-phase) and Q (quadrature) signals are created in the first stage of the
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USRP receiver hardware when the single channel from the antenna is multiplied
by the local oscillator output (to generate the I channel) and a replica of the
LO output shifted in phase by 90◦ (to generate the Q channel). This creates
what DSP engineers call an “analytic signal.” If you are already familiar with
analytic signals, you may want to skip the next few paragraphs.

Consider a transmitter emitting a dead carrier at 144.285 MHz, and a second
interfering transmitter at 144.284 MHz. The composite signal from the two
transmitters arrives at a receiver’s antenna and generates a voltage VI(t)

VI(t) = A sin(ωdt) +B sin(ωut)

where A and B are the amplitudes of the carriers (on the order of microvolts,
perhaps) and ωd = 2π144.285 · 106, while ωu = 2π144.284 · 106.

An analog receiver, set up in its CW U mode, might tune a local oscillator
to 134.2845 MHz, mix it with the incoming signal, filter out the lower sideband
with a filter tuned to pass 10 MHz to 10.001 MHz, beat that resulting signal
against a 10 MHz oscillator, and drive the result to a speaker. The desired
signal passes through the filter and the undesired signal gets turned into heat
inside the filter. This has worked for generations. It is the analog way.

But the astute reader will note that the filter required to reject the lower
sideband can be quite costly, and is always something of a compromise. In the
early days of SSB receivers, there were numerous schemes proposed to avoid
this difficulty. DSP based receivers resurrected one of these approaches: the
phasing method.3

For the moment, let’s assume that by some extremely good fortune, our
receiver was able to capture two sets of signals. The first set is our original
VI(t) but the second set is made up of cosine waves like this

VQ(t) = A cos(ωdt) +B cos(ωut)

The VI signal is the inphase signal, and VQ is the quadrature signal.
Now let’s look at what happens when we build a direct-conversion receiver

by changing the first LO to 144.2845 MHz. (And let’s assume that A = B = 1.)
Now when we beat the LO against VI and VQ we get:

VifI(t) = sin(ωlot)(sin(ωdt) + sin(ωut))

= 1
2 (cos((ωlo − ωd)t) − cos((ωlo + ωd)t) + cos((ωlo − ωu)t) − cos((ωlo + ωu)t))

VifQ(t) = sin(ωlot)(cos(ωdt) + cos(ωut))

= 1
2 (cos((ωlo + ωd)t) + sin((ωlo − ωd)t)) + cos((ωlo + ωu)t) + sin((ωlo − ωu)t))

Given that our LO and both of the incoming signals are far above 1MHz in
frequency, the sum terms ωlo +ωd and ωlo +ωu get ignored by later processing.4

3This same scheme was employed to great effect in Rick Campbell’s all-analog direct con-
version receiver designs.[2]

4Actually, we can make them go away, but the details of that operation are more easily
handled with complex arithmetic.
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Assuming that we can dispose of the sum terms:

VifI(t) = 1
2 (cos((ωlo − ωd)t) + cos((ωlo − ωu)t))

VifQ(t) = 1
2 (sin((ωlo − ωd)t)) + sin((ωlo − ωu)t))

Now we play a bit of a trigonometry trick. Remembering our high school math
sin(θ) = − sin(−θ) and cos(θ) = cos(−θ). As we’ve set the problem up, ωlo −
ωd < 0 and ωlo − ωu > 0. So

VifI(t) = 1
2 (cos((ωd − ωlo)t) + cos((ωlo − ωu)t))

VifQ(t) = 1
2 (− sin((ωd − ωlo)t) + sin((ωlo − ωu)t))

Finally, imagine that we can build a magic box that shifts any input at any
frequency by exactly 90◦. We’ll call this box or function H and note that
H(sin(θ)) = cos(θ) and H(cos(θ)) = − sin(θ). We’ll apply this transformer to
the Vifc signal only, and subtract the result from Vif .

VifI(t) = 1
2 (cos((ωlo − ωd)t) + cos((ωlo − ωu)t))

H(VifQ(t)) = 1
2 (− cos((ωlo − ωd)t) + cos((ωlo − ωu)t))

VifI(t) −H(VifQ(t)) = cos((ωlo − ωd)t)

Our resulting signal contains only the desired ωd frequency!5

The last remaining problem, is of course, that we assumed we could get both
the VI and VQ versions of our signals. Nature would never be that cooperative.
However, we can create an inphase and quadrature signal stream from a single
input by adding one extra LO. Assuming an input signal V (t) = sin(ωt) we can
apply a quadrature first LO at ωlo like this:

VI(t) = sin(ωlot) sin(ωt)

= 1
2 (cos((ωlo − ω)t) − cos((ωlo + ω)t))

VQ(t) = cos(ωlo) sin(ωt)

= 1
2 (− sin((ωlo − ω)t) + sin((ωlo + ω)t))

And remembering that H(cos(θ)) = − sin(θ), we see that VQ is, in fact, a replica
of VI shifted by 90◦.

For a more detailed explanation of the concept behind analytic signals, see
[3, pp 439-464]. Lyons uses a much more powerful method for reasoning about
analytic signals: complex arithmetic. “Complex arithmetic” is not nearly as
scary as it sounds. Lyons’ introduction is quite gentle and the illustrations are
very clever.

5If we had added the two signals, we would have ended up with a signal containing only
the lower sideband ωu.
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1.4 A Few Words About Lyons

A reader of bibliographies might assume that almost everything I learned in
this project came from Richard Lyons’ much cited text “Understanding Digital
Signal Processing.” This is not the case, but it could have been. Rather than
filling the bibliography with references to the seminal work in each area, this
paper will instead refer to the relevant pages in Lyons’ book wherever his text
provides further support or explanation. There are many other useful, and
perhaps even revered books on this topic6 but for purposes of constructing a
software defined radio, I believe that “Understanding Digital Signal Processing”
is the one essential text.

2 The Receiver

The SoDa receiver chain comprises two modules. The RF component (USRPRX)
processes the RF samples from the USRP while the AF component (AudioRX)
filters and demodulates the received signal.
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Figure 5: The SoDa Receiver Path

6Perhaps foremost among the revered texts is “Digital Signal Processing” by Oppenheim
and Schafer.[4].
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2.1 The USRPRX Module

The USRPRX module is responsible for shifting the incoming RF stream down
to baseband. It maintains a quadrature oscillator that tunes from about 80 kHz
to 180 kHz to cover the difference between the desired frequency and the sum
of the first and second LO frequencies. The first and second local oscillators
are tuned so that the frequency of interest is always at least 80 kHz away from
any DC output of the analog mixers, and sufficiently far away from the analog
oscillators that the phase noise over the range of interest is greatly reduced from
the close-in phase noise of the USRP oscillators. (See Section 4.1.2.)

The frequency shifting operation is performed with a quadrature oscillator
and a complex multiplication to convert I RX IF2 and Q RX IF2 into I RX IF3

and Q RX IF3. This is the same operation performed by the digital downcon-
verter in the FPGA.7 (See Figure 2.)

I RX IF3 = I RX IF2 · Ilo3 + Q RX IF2 ·Qlo3

Q RX IF3 = Q RX IF2 · Ilo3 − I RX IF2 ·Qlo3

2.2 The AudioRX Module

The AudioRX module demodulates the RF sample stream from the USRPRX
unit, and downsamples the stream to match the 48KHz sampling rate of the
audio output device. The audio device itself is driven via the ALSA audio
interface provided by the host computer’s Linux operating system.[5] Figure 5
shows the organizational scheme of the AudioRX unit.

For most modes, the input RF stream is downsampled immediately from
625 kS/s to 48 kS/s. Next the I and Q channels are passed through a bandpass
filter before the demodulation stage. Demodulation of CW U, CW L, USB,
and LSB all follow the same path. The Q channel is passed through a hilbert
transformer[3, pp 489-495] to generate a 90 deg phase shift, while the I channel
is passed through an all-pass filter with exactly the same delay as the hilbert
transformer. The resulting signals are added for CW L and LSB, or subtracted
for CW U and USB to generate a single channel of audio output. Alternate
sideband rejection is quite good, in excess of 50 dB, and beyond my ability to
accurately measure it.

Narrowband FM demodulation uses a simple scheme that calculates the
derivative of the incoming I and Q channels and normalizes these to the magni-
tude of the signal.[3, pp 759-760] This is a fairly inexpensive operation, though
by no means “high fidelity.” It is much simpler than PLL based solutions.

Wideband FM demodulation uses the same discriminator function as for
narrowband FM, but the demodulation is done on the incoming RF I and Q
channels before downsampling. This is done because much of the energy in a
wideband FM channel would fall above the nyquist frequency for the 48 kS/s
audio stream.

7 The reader may note a confusing change in sign for the terms involving Qlo3. Downcon-
verters must invert the sign of the Q channel in order to make the math come out correctly.[3,
p 456 ff].

9



In both FM demodulators, the output is followed by a median filter to mit-
igate some of the pops and crackles that appear for weak FM inputs.

The demodulator routine produces a stream of audio buffers, each 2304
samples long. These are placed on a queue for later dispatch to the ALSA audio
output. A block is removed from the queue when the audio interface is ready
to accept new data.

The oscillator that generates the audio system clock is not locked to any
external standard. In fact, it is likely derived from an inexpensive crystal oscil-
lator with an accuracy far lower than 100ppm. The USRP however, is locked
to a GPS disciplined oscillator. The discrepancy between the governing clocks
for the two streams means that the audio system can get ahead or fall behind
the USRP.

If the audio system gets ahead of the USRP, there will be a brief gap in
the output audio of up to 48 mS. If the discrepancy is as much as 100 ppm,
the audio stream will get one packet ahead of the USRP every 480 seconds. In
practice, I’ve yet to see this.

For both of the host computers used so far, the audio system fell behind the
USRP. This causes no great upset in the audio channel, but the delay between
arrival of the signal at the antenna and arrival of the demodulated output at the
speaker grew longer with time. In earlier versions of the program I noticed that
the audio would fall 10 seconds behind after about 12 hours of continuous use.
The AudioRX unit was modified to watch the queue of pending audio buffers.
When the queue gets larger than 8 buffers (about 400 mS) each subsequent
buffer sent to the Audio system is trimmed by 1 sample. Truncating the audio
buffers would cause a regular “pop” in the speaker that might become irritating.
Rather than truncate the buffer, one sample is removed from a “random” spot
within each buffer. The pseudo random selection is irregular enough that the
rate matching correction is undetectable to the ear.

2.3 Filters

SoDa uses digital filters in a number of places both in the receive chain and in the
transmit chain. These are all built using the FFTW3[6] fast fourier transform
library. The FFTW3 library is sufficiently fast that any FIR filter of more than
10 taps or so is most efficiently implemented in the frequency domain. The
combination of a highly tuned FFT implementation, and much better memory
access patterns with the frequency domain approach made it the logical choice.
All filters used in SoDa, including the anti-aliasing filters in the resampling
functions, are implemented using the Overlap-and-Save algorithm.[3, pp 716-
720] SoDa’s OSFilter class provides automatic constructors for bandpass and
lowpass filters and creates the necessary save buffers and FFTW transform
plans. There are four pre-defined audio filters of 100 Hz, 500 Hz, 2 kHz, and 6
kHz bandwidths. The 100 Hz and 500 Hz filters are centered near 450 Hz, while
the other two filters have a lower cutoff frequency of about 250 Hz.
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2.4 Sample Rate Conversion

The sample rates at each stage of the chain were selected to minimize the diffi-
culty in conversion from one stage to the next.

Buffer sizes were chosen to make the FFT operations efficient, though they
were not chosen to be powers-of-two. The FFTW3 library is quite good at
mixed-radix FFTs where the size of the transform is 2a · 3b · 5c · 7d. This makes
a buffer size of 30000 samples (for the 625 kS/sec RF stream) and 2304 samples
(for the 48 kS/sec audio stream) convenient. The two buffer sizes and the two
sample rates are in the ratio of 625

48 .
Converting from the RF input stream to the audio stream is done in four

stages where each stage upsamples by a factor of 1, 3, or 4, and downsamples
by a factor of 5. (See Figure 6.)
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Figure 6: Resampling from RF Sample Rate to AF Sample Rate

Conversion of the transmit stream uses the same resampler code, but up-
samples at each stage by a factor of 5 and downsamples by a factor of 1, 3, or
4 depending on the rate conversion stage.

3 The Transmitter

The SoDa transmitter chain comprises three modules. The RF component
(USRPTX) forwards a modulation envelope to the USRP transmit block. The
AF component (AudioTX) creates the I/Q channels from a single channel au-
dio stream. The CW generation and envelope unit (CWTX) converts incoming
streams of text into shaped pulses that modulate a low frequency carrier in the
USRPTX unit.

3.1 The USRPTX Module

The USRPTX module may be the simplest unit in the SoDa radio. In CW
mode, it accepts CW modulation envelopes from the CWTX unit and impresses
them onto a 500 Hz I/Q audio tone. In other modulation modes, it simply passes
the I/Q audio stream (upsampled at the RF sample rate of 625 kS/sec) to the
USRP transmitter.
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3.2 The AudioTX Module

The AudioTX module is responsible for converting incoming microphone input
at 48 kS/sec to an I/Q stream, and interpolating (upsampling) to 625 kS/sec.
In the case of a USB or LSB signal, the Q channel is generated by passing
the input audio through a hilbert transformer. (The I channel is created by
passing the same audio signal through an allpass filter whose delay is matched
to the hilbert transformer.) For LSB transmission, the sign of the Q channel is
flipped. In AM mode, the Q channel is set to zero and the audio is copied to
the I channel. SoDa does not yet support FM transmission modes.

3.3 The CWTX Module

The CWTX module converts incoming text streams (on the Control Stream,
from the UI process) into morse code pulses. The pulses are shaped and widths
are set according to the currently selected CW speed. CW speed is adjusted
on request from the UI process.8 The morse pulses are impressed on a low
frequency “carrier” by the USRPTX.

8There is a knob in the GUI that causes a message to be sent to the SoDaServer UI
thread when the CW speed is adjusted.
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3.4 Monitoring the CW Sidetone

While the CW transmitter is active, the USRPCtrl will tune the receiver
chain to the transmit frequency. This allows the receiver sections of the radio
to monitor the outgoing CW signal by listening to the leaked transmit signal
inside the USRP box. While the receive chain is in “sidetone” mode, the audio
gain is governed by the sidetone gain setting rather than the receive mode audio
and RF gain settings.

4 The Controller

The UHD library supplied by Ettus Research is quite complex. In general, it
is thread-safe. That is, multiple threads can use the library to access a single
device. But in practice, allowing multiple threads to make control changes is
likely to lead to confusion, if not actual error.

The USRPCtrl process handles all changes to the state of the USRP that
are not associated with either the receive data stream or the transmit data
stream. (The USRPRX thread manages its own data stream, as does the
USRPTX thread.) The controller can change RX and TX gain settings, sam-
pling rates, transmit/receive switches, the two front-end local oscillators, and
the digital downconverter and upconverter oscillators.

4.1 Tuning

Tuning with a USRP radio is spread out over three stages:

First Stage Analog LO: implemented with a very versatile synthesized os-
cillator, the ADF4350[7] from Analog Devices. The chip produces both I
and Q outputs that span the frequency range from about 68 MHz to 2200
MHz. The chip can be used as a fractional-N or integer-N PLL synthesizer.
Its tuning steps can be as small as a few hundred Hz.

Second Stage Digital Down/Up Converter: implemented as digital oscil-
lator within the USRP’s field programmable gate array. The digital oscil-
lators can be tuned to sub-Hz resolution.

Third Stage Digital Down Converter: implemented in software as a block
in the USRPRX process. This oscillator can also be tuned to sub-Hz
resolution.

4.1.1 Transmit Tuning

Transmit tuning is very straightforward. The UHD library provides a routine
that takes a target frequency as an argument and sets both the first LO (in the
ADF4350) and the second LO (in the FPGA) to appropriate values. During
CW U or CW L transmission, the requested frequency is 500 Hz below (for
CW U) or above (for CW L) the nominal transmit frequency. For SSB or AM
modes, the requested frequency is exactly the nominal transmit frequency.
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4.1.2 Receive Tuning

On the receive side, the USRPCtrl process gives more direct guidance to the
UHD library, and requests specific tuning settings for the first and second LOs.
In each case, the requested receive frequency for the USRP RX chain is set to
be at least 80 kHz below and no more than 180 kHz below the target receive
frequency. This ensures that the DC offset component in any spectrum plots is
well away from the frequency of interest. It also helps to put the analog LO tens
of kHz away from the target frequency to reduce the effects of “close in” phase
noise from the PLL oscillator. The upper limit of 180 kHz keeps the third stage
LO frequency well below the nyquist frequency of the 625 KS/sec I/Q signal
stream.9

Months of experimentation with various tuning schemes showed that the
fractional-N tuning supported by the supplied UHD library sacrificed a few dB
in receiver sensitivity by raising the noise floor. Especially near the tuned car-
rier, spurs at multiples of the reference frequency divided by the fractional-N
denominator (normally 1024) were quite visible in spectrum plots. Fortunately,
the UHD library is open source code, so it was modified to support integer-N tun-
ing for the first stage LO on the receiver side. (The difference between integer-N
and fractional-N tuning on the transmit side is negligible.) When linked against
a version of libuhd where integer-N mode is supported, the USRPCtrl process
requests a first LO frequency that is a multiple of 6.25MHz and is below the
target frequency. The second (digital) LO is set so that the resulting sum is
between 80 kHz and 180 kHz below the target frequency.

Recent experiments have shown that results approaching those from an
integer-N mode are achievable if the fractional-N settings are chosen such that
the numerator of the fraction is always zero. This requires some “trial and
error” tuning, as libuhd does not make this information directly visible.

4.2 TX/RX Switching

The USRP was designed to support full duplex communication. In particular,
its transmit and receive chains have independent antenna terminals. This ar-
rangement is convenient for driving a transverter, as I’ve encountered more than
my share of problems with T/R switches. Running twin cables (RX labeled with
a red band at each end) between the IF and the transverter is more than offset
by the savings in blown-up T/R interfaces.

The WBX module contains several digital I/O pins that can be used as
general-purpose I/O lines. The USRP was modified to connect one of them
to a relay driver transistor that operates a keying relay. This is used to short
the transverter’s PTT line to ground during transmit. Putting the relay and
driver transistor between the relatively expensive USRP electronics and the

9 The SoDa design is quite conservative here. Because the stream is represented by both
inphase and quadrature components, the practical upper limit is 500 kHz or so. Future
experiments will test larger LO offsets.
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transverter prevents the USRP drivers from being damaged in the event of an
accident (likely) or misconnected cable (certain).

The USRPCtrl process manages the T/R output pin and ensures that
the transmit PTT line is activated well before a signal is transmitted through
the TX chain, and is held on until after the USRPTX control process as left
transmit mode.

5 The User Interface

The SoDaRadio GUI (Graphical User Interface) program and the SoDaServer
program were built separately for several reasons.

1. The real-time requirements for a GUI are different from and less stringent
than those for the USRP control.

2. Keeping the GUI and the radio parts separate allows for a cleaner and
more modular design.

3. Over time, other GUI schemes might be used to allow access to the radio
from handheld devices, web browsers, or other GUI instances on remote
computers.

Figure 8 shows the SoDaRadio GUI during a contact between KB1VC and
KW2T on the second weekend of the 2013 10GHz and Up Cumulative Contest.
The waterfall diagram shows a distinct streak – KW2T’s CW signal – somewhere
in the range of 5 to 10 dB above the noise floor.
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Figure 8: The SoDaRadio Graphical User Interface (Contact with KW2T on
Mt. Equinox, VT from Block Island, RI - Sept. 22, 2013)

Experience with the waterfall display suggests that a continuous distinct
trace is usually sufficient for CW copy, given a reasonable amount of patience.
If the operator can see the signal, he can probably copy the signal. Conversely,
I have not yet heard a signal that did not register on the waterfall display.

5.1 The GUI Implementation

The GUI was built with the wxWidgets cross platform GUI library, and its
wxformbuilder GUI constructor.[8]. wxWidgets was chosen with the hope that
SoDa might someday be ported to other platforms.

The GUI comprises five separate function groups.

Spectrum Display This is in the form of a waterfall diagram, or a periodogram
(an X-Y plot of spectral power vs. frequency, as might be shown on
a spectrum analyzer). Settings for center frequency and bandwidth are
located to the right of the display. Range and reference level can be set
for the periodogram, but are automatically calculated for the waterfall.
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Mode, Tuning, Gain, and Bandwidth Settings These are located in the
middle of the display. Tuning is normally accomplished by clicking on a

point in the spectrum display. Alternatively, the
�� ��Tune button will pop-

up a tuning dialog that allows selection of the transmit and/or receive

frequency. The two can be locked together with the
�� ��TX=RX Lock

button.

Navigation The To Grid text box combined with this station’s location (the
From Grid) produces a calculated bearing, reverse bearing, and grid-
center-to-center distance in the display to aid in antenna pointing. Infor-
mation received from an attached GPS receiver (UTC time and location)
are shown below the big PTT switch on the right of the display. The To

Call text box completes the information required to enter a contact into
the log.

CW and PTT The white text box in the lower center of the display allows
free-form text to be transmitted while in CW mode. The buttons below
CW Control automatically generate text for the standard parts of an ex-
change, and can automatically trigger a transition from TX to RX mode

when the exchange has been sent. The blue
�� ��TX OFF button activates

the transmitter, and changes itself to a red
�� ��TX ON button as a reminder

that the radio is transmitting.

Logging The
�� ��Log Contact button at the bottom left of the window creates

a log entry and a snapshot of the waterfall window. An optional comment

may be added to the log. The
�� ��Edit Log button pops up a dialog that

allows changes or corrections to be made to the log.

Additionally, the
�� ��Set Power, Speed, Sidetone button pops up a dialog box

that allows the operator to change the transmit power, and CW speed and
sidetone volume.

The tuning dialog box in Figure 9 presents two more useful features.

The
�� ��Ext Ref Enable checkbox enables or disables the external frequency

reference input to the USRP. While the local reference in the USRP is sufficiently
accurate to position the VHF signal “close enough for amateur use,” the external
GPS reference is extremely useful for the second special feature in the tuning
dialog.

The “Transverter LO Cal” function takes advantage of what would otherwise
be a minor annoyance. When the USRP is used with an external microwave
transverter, the transverter’s own local reference oscillator leaks onto the receive
RF path from the transverter back to the USRP. In the case of the Down East
Microwave 10GHz transverter used here, the harmonic of the transverter LO at
1136 MHz does not greatly affect the available dynamic range of the receiver,
but it is well above the noise floor. The transverter LO is not slaved to an
external reference, so it can drift with time and temperature despite careful and
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Figure 9: The Tuning Dialog Box

clever engineering.10

While the transverter LO is not GPS disciplined, the USRP oscillators are.
In “Transverter LO Cal”, the USRP and SoDa USRPRX process are used
to measure the frequency of the transverter LO using the GPS oscillator as a
reference. (The USRPRX thread zero-beats the nominal 1136 MHz signal.)
The indicated frequency is then the actual transverter LO frequency. In most
cases it is within a few hundred Hz. If, for instance, the measurement results in
a reading of 1136.000312 MHz, then the actual 10GHz LO is 9 × 1136.000312
MHz or 10224.002808 MHz. The tuning in both the USRPTX and USRPRX
threads is adjusted to compensate for the LO drift. This allows the SoDa radio
and transverter system to operate as if all oscillators were slaved to the GPS

reference, provided the operator remembers to poke the
�� ��Transverter LO Cal

button every now and then. After the transverter has warmed up for an hour
or so, hourly calibrations have proved sufficient. During the warm-up phase,
calibration is best invoked every few minutes.

This process is not activated automatically as it requires a second or so to get
an accurate reading and the resulting audio drop-out would be quite irritating.

5.2 Communication with the SoDa Server

The GUI communicates with the SoDaServer via a pair of network connections
using Unix Domain sockets. UDP sockets proved easier to use than IP sockets,
especially for the fixed length packets that are sent over the network links.
One link carries command and status packets to and from the SoDaServer
UI process. The other link carries vectors of power-vs-frequency measurements

10The simpler transverter LO design has its advantages. Because it is a simple crystal
oscillator rather than a synthesized source, its spectrum is comparatively clean.
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from the SoDaServer UI process to the spectrum display in the GUI.
Clicking on a spot in the spectrum display, for instance, will create a tune-

request message that is sent from the GUI, over the control link, to the So-
DaServer UI process. The UI process then forwards the control request over
the SoDaServer Command Stream where it will be seen by all of the other So-
DaServer threads. Threads that are not “interested” in the request (such as
the AudioRX thread) will ignore the command, while the rest will take ap-
propriate action. The USRPCtrl thread will convert the tune request message
into a series of calls to libuhd.

The SoDaServer UI process has no knowledge of the appearance, function,
or even location of the GUI. This allows the SoDaServer program to be applied
to other purposes, such as the construction of a spectrum analyzer, or a noise
figure meter. Someday.

6 Operating Experience

SoDa has been used as the IF rig for the KB1VC efforts in the 2012 and 2013
10GHz and Up Cumulative Contest.

The 2012 effort exposed a number of problems with an early version of the
GUI.

• Tuning was extremely awkward as the first GUI did not automatically
handle CW offsets. (Clicking on a strong signal peak would tune the
receiver to zero-beat.)

• The early GUI did not have a waterfall chart, and instead presented a plot
of spectral density vs. frequency as one might see on an analog spectrum
analyzer. Small signals tend not to deflect the trace sufficiently to allow
their detection “by eye.”

• The CW keyer interface was extremely awkward. Almost every CW QSO
involved fumbling for the correct button and occasionally transmitting the
wrong call sign.

The 2013 effort saw the introduction of a waterfall plot which helped im-
mensely in identifying very weak signals. More importantly, it allowed me to
peak the antenna on signals that were “near” the rendezvous frequency, or at
least within the 25 kHz or 50 kHz window. Clicking on a stripe on the waterfall
chart automatically tunes both the receiver and the transmitter, accounting for
CW offset where necessary.

Between the two contests, I tried out PSK31 operation on the HF bands using
my FT-817 and FLDIGI, a Linux application for digital radio. The user interface
was quite well tuned for both contest operation and casual conversation, much
more so than my own first attempt. While the improved SoDa UI is not as
versatile as the FLDIGI interface, it proved workable in the 2013 contest.

The USRP hardware itself has held up well in portable operation, even in
some unpleasantly humid (or even torrential) weather. However, the 12VDC
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to 115VAC inverter – required to power the the 6V DC “wall wart” that came
with the USRP – generated a great deal of noise. A 12VDC to 6VDC converter
was added for the second contest.

Good 12V to 6V DC to DC converters are not general stock components,
but Vicor[9] makes a 5V switching regulator that is very quiet and capable of
sourcing 10A. Changing the voltage sense resistive divider on the Vicor PI3302-
00-EVAL1 module raised the output from 5 volts to 6 volts. Adding some input
decoupling eliminated any perceptible power supply noise in the radio.

The new 12VDC to 6VDC converter was a vast improvement, but the change
exposed the huge racket caused by the laptop power supply, also running off of
the inverter. A 12VDC replacement power supply was even worse, creating
very broadband noise that got into everything. 11 Next year will see a new
supply for the laptop. In the meantime, the laptop external supply/charger is
left disconnected during contacts. The laptop battery life is sufficient to allow
hours of continuous operation without recharging.

The WBX module tunes a very wide range. To preserve this flexibility, it
has no front-end filtering. This makes it susceptible to overload from in-band
and out-of-band signals. As a transverter IF, the transverter filtering was more
than adequate to suppress most interfering sources. (It could not suppress the
signal from nearby VHF radios on the 2 meter liaison frequency. On the other
hand, not many IF radios can.) As a VHF or UHF receiver, preselector and
transmit filters are a must.

7 Conclusion

The SoDa effort achieved its first goal: as a learning experience it was both
challenging and rewarding. The radio performs well, and is quite good digging
signals out of the noise. Over four weekends of contest operation and countless
hours in the shack, it has proved itself as a transverter exciter and as an all-mode
receiver.

Along the way, the SoDa project has created a set of modular building blocks
for creating other USRP applications. SoDa is available on SourceForge at
http://sodaradio.sourceforge.net/ so that others might try out the Ettus
USRP, a very interesting universal software radio peripheral.
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